CHECKBALL PISTON PUMPS

USING THIS BROCHURE

This brochure contains specifications for the most commonly used checkball pumps. Contact the sales department for availability of models with features and operating requirements not shown here.

Refer to page 28 for general fluid guidelines and information on ports. Request Bulletin PSI.CB (dynexpumprecommendations.pdf) for checkball pump installation and operating recommendations.

Table of Contents

Pump Type and Series	Page
Fixed Displacement Pumps	2
PF500 Series (S.A.E. A-A 2-bolt)	3
PF1000 Series (S.A.E. A 2-bolt)	6
PF2000 Series (S.A.E. B 2-bolt)	9
PF2000 Series (Special Mounting)	11
PF3000 Series (S.A.E. C 4-bolt)	13
PF4000 Series (S.A.E. D 4-bolt)	16
PF4200 Series (S.A.E. D 4-bolt)	19
PF4300 Series (S.A.E. D 4-bolt)	22
PF6000 Series (S.A.E. E 4-bolt)	25
Fluid Guidelines and Outlet Port Configurations	28

HOW THE PUMPS OPERATE

The checkball pump design uses two check valves in each piston pumping chamber to direct flow from the inlet side of the pump to the pump outlet port.

Wobble Plate Rotates with Shaft

During operation, a fixed angle wobble plate rotates with the drive shaft. The angled surface of the wobble plate imparts a reciprocating motion to the pistons which move in and out of the bores in the stationary barrel.

During its suction stroke, each piston is filled through its inlet check valve. Fluid is drawn by vacuum into the piston pumping chamber in the barrel.

Check Valves Control Fluid

During compression, the inlet check valve closes and pressure in the pumping chamber rises until it exceeds load pressure at the outlet port.

The outlet checkball then lifts off its seat and fluid is pumped

across the check valve, out of the pumping chamber. Piston outputs are combined in the pump barrel or cover, and then discharged from the pump outlet providing smooth flow to the system.

Multiple Outlet Pumps

In Split-Flow[®] models, the piston outputs can be isolated, or grouped together in various combinations, supplying flows to multiple function circuits without flow dividers.

Fixed displacement checkball pumps, with bi-directional shaft rotation, provide constant direction of output flow regardless of the direction of drive shaft rotation.

Typical Applications

Reduced power requirements, as low as 1.0 HP at 10 000 psi (0.7 kW at 700 bar), make these pumps ideal for use in remote locations with limited power supply.

These compact high-pressure pumps can be used on portable power packs for highpressure torque wrenches and other service tools. Split-Flow[®] models with multiple outlets are ideal for tool circuits with changing flow and pressure requirements.

Mounting

S.A.E. A-A 2-bolt pattern with 0.25 inch (6,4 mm) pilot engagement.

Shaft

Available with 0.625 inch (15,88 mm) diameter keyed shaft.

Outlet Port Options

Standard pressure models have S.A.E. ports. The high pressure "H" option requires the use of outlet port option "A" (Autoclave Medium Pressure, Butech M/P or equivalent fittings), or outlet port option "B" (British Standard Pipe fittings).

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in a slight flow reduction. Refer to the table.

Seal Options

Standard seals are Fluorocarbon (Viton[®] or Fluorel[®]). Options include EPR seals for

Specifications

_	at 150	it Flow 0 rpm ^①	at 180	it Flow 0 rpm ^①		Rated Pressure		num ttent ure	Rated	Maximum
Pump Models	U.S. gpm	L/min	U.S. gpm	L/min	psi	bar	psi	bar	Speed rpm©	Speed rpm③
PF501-10	0.17	0,66	0.21	0,79	8000	560	8000	560	1800	3600
PF504-10	0.27	1,04	0.33	1,25	8000	560	8000	560	1800	3600
PF507-10	0.38	1,45	0.46	1,74	8000	560	8000	560	1800	3600
PF510-10	0.57	2,14	0.68	2,57	8000	560	8000	560	1800	3600
PF501H-10	0.17	0,66	0.21	0,79	8000	560	10 000	700	1800	3600
PF504H-10	0.27	1,04	0.33	1,25	8000	560	10 000	700	1800	3600
PF507H-10	0.38	1,45	0.46	1,74	8000	560	10 000	700	1800	3600
PF510H-10	0.57	2,14	0.68	2,57	8000	560	10 000	700	1800	3600

① Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the table below.

② Contact the sales department for applications requiring continuous duty operation at speeds higher or lower than shown in the "Typical Performance Curves" on page 4.

③ Higher than rated speeds may require a pressurized inlet. Refer to "Inlet Conditions".

Minimum Inlet Pressure^①

	Operating Speed										
Pump	1800) rpm	2800	rpm	3600 rpm						
Models	psi	bar	psi	bar	psi	bar					
PF501 and PF504	0	0	0	0	5	0,4					
PF507	0	0	5	0,4	10 [@]	0,72					
PF510	0	0	102	0,7 ⁽²⁾	15 ²	1,02					

① Values shown are based on fluid viscosity of 100 SUS (20 cSt).

Inlet pressures higher than 10 psig (0,7 bar) require a high-pressure shaft seal. Refer to "Typical Model Code" on page 6 for seal options.

use with some phosphate ester fluids, or Fluorocarbon with high pressure shaft seal.

Weight (Mass)

11.9 lb (5,4 kg)

PUMP SELECTION

The table shows specifications for standard pressure models and "H" option models for use at intermittent pressures higher than 8000 psi (560 bar).

Ordering a PF500 Series pump requires a complete model code specifying shaft, seal and outlet port options. Refer to "Typical Model Code" on page 5.

Maximum Pressure

The intermittent pressures listed in the table are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Fluid Guidelines

See page 28 for "Fluid Recommendations".

Some pump models may require reduced operating pressures when using low-lubricity fluids.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

Split-Flow[®] Provides Multiple Outlets

PF500 models with split-flow covers efficiently supply flows for multiple function circuits. Piston outputs are grouped together in the cover, with various piston flow splits available in this four-piston pump. Refer to "Typical Model Code" on page 5 and contact the sales department for availability.

Reduced Output Option

Pump output can be reduced by one-half by deactivating two pistons. Refer to "Typical Model Code" on page 5.

PF500 SERIES

PF501 PF504 PF507 PF510 0.8 0.7 200 psi (15 bar) 8000 psi (560 bar) B A B A B A B 2.5 (mdg.S.U) YBELIVERY (U.S. 0) 0.7 0.7 0.7 (L/min) 2.0 DELIVERY 1.5 1.0 A 0.5 0.1 0.0 5 3.5 10 000 psi (700 bar) 8000 psi (560 bar) 6000 psi (420 bar) 4000 psi (280 bar) 1000 psi (70 bar) 10 000 psi (700 bar) 8000 psi (560 bar) 6000 psi (420 bar) 4000 psi (280 bar) 1000 psi (70 bar) 10 000 psi (700 bar) 8000 psi (560 bar) 6000 psi (420 bar) 4000 psi (280 bar) 1000 psi (70 bar) 10 000 psi (700 bar) 8000 psi (560 bar) 6000 psi (420 bar) 4000 psi (280 bar) 1000 psi (70 bar) A B C D E A B C D E B C D E B C D E 3.0 В (kW) INPUT POWER (HP) 2,5 3 INPUT POWER 2.0 1,5 1,0 0.5 0 300 600 900 1200 1500 1800 2100 300 600 900 1200 1500 1800 2100 300 600 900 1200 1500 1800 2100 300 600 900 1200 1500 1800 2100 0 0 0 0 SPEED (rpm) SPEED (rpm) SPEED (rpm) SPEED (rpm)

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 3. Contact the sales department for applications requiring continuous duty operation at speeds higher or lower than shown.

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal. Refer to Bulletin PSI.CB for general installation and operating recommendations. The drawing shows dimensions common to all PF500 models. Note that the location of the outlet port varies as shown, dependent on the type of port. Refer to "Outlet Port Configurations" on page 29 and "Typical Model Code" on page 5 to specify port.

PF500 SERIES

TYPICAL MODEL CODE

PF1000 SERIES

PUMP DESCRIPTION

Fixed displacement checkball pumps, with bi-directional shaft rotation, provide constant direction of output flow regardless of the direction of drive shaft rotation.

Mounting

S.A.E. A 2-bolt pattern with 0.25 inch (6,4 mm) pilot engagement.

Shaft Options

Standard keyed shaft, 0.875 inch (22.20 mm) diameter;

Optional spline shaft, 0.873/0.872 inch diameter standard S.A.E. 13 tooth, 16/32 D.P. 30° involute spline.

Outlet Port Options

Standard pressure models have S.A.E. ports. The high pressure "H" option requires the use of outlet port option "A" (Autoclave Medium Pressure, Butech M/P or equivalent fittings), or outlet port option "B" (British Standard Pipe fittings).

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in slight flow reduction. Refer to the table.

Seal Options

Standard seals are Buna-N (Nitrile). Options include Fluorocarbon (Viton[®] or Fluorel[®]), or EPR for use with some phosphate ester fluids.

Weight (Mass)

30 lb (14 kg)

Specifications

	Outpu at 1500	t Flow) rpm ^①		it Flow 0 rpm ^①	Rat		Maximum Intermittent Pressure		Rated	Maximum
Pump Models	U.S. gpm	L/min	U.S. gpm	L/min			Speed rpm ^②	Speed rpm [©]		
PF1002-10	1.2	4,7	1.5	5,7	6000	420	8000	560	1800	3600
PF1003-10	1.7	6,6	2.1	7,9	6000	420	8000	560	1800	3600
PF1004-10	2.1	8,2	2.6	9,8	6000	420	8000	560	1800	3600
PF1005-10	2.9	11,0	3.5	13,2	6000	420	8000	560	1800	2800
PF1006-10	3.4	12,9	4.1	15,5	6000	420	8000	560	1800	2800
PF1007-10	4.1	15,7	5.0	18,9	4000	280	6000	420	1800	2800
PF1008-10	4.9	18,6	5.9	22,3	4000	280	6000	420	1800	2800
PF1002H-10	1.2	4,7	1.5	5,7	6000	420	10 000	700	1800	3600
PF1003H-10	1.7	6,6	2.1	7,9	6000	420	10 000	700	1800	3600
PF1004H-10	2.1	8,2	2.6	9,8	6000	420	10 000	700	1800	3600
PF1005H-10	2.9	11,0	3.5	13,2	6000	420	10 000	700	1800	2800
PF1006H-10	3.4	12,9	4.1	15,5	6000	420	10 000	700	1800	2800

① Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the table below.

Contact the sales department for applications requiring operation above rated speed. High speed operation may require a pressurized inlet. Refer to "Inlet Conditions".

Minimum Inlet Pressure[®]

				Operatin	ig Speed			
Pump	1800 rpm		2200 rpm		2800 rpm		3600 rpm	
Models	psi	bar	psi	bar	psi	bar	psi	bar
PF1002	0	0	0	0	0	0	5	0,4
PF1003 and PF1004	0	0	0	0	5	0,4	10 ²	0,72
PF1005, PF1006, PF1007 and PF1008	0	0	5	0,4	10 ²	0,7 [@]	-	-

① Values shown are based on fluid viscosity of 100 SUS (20 cSt).

Inlet pressures higher than 10 psig (0,7 bar) require a high-pressure shaft seal. Refer to "Typical Model Code" on page 8 for seal options.

PUMP SELECTION

The table shows specifications for standard pressure and high pressure "H" option models.

Ordering a PF1000 Series, 10 Design, pump requires a complete model code specifying shaft, seal and outlet port options. Refer to "Typical Model Code" on page 8.

Maximum Pressure

Checkball pumps are especially suited for applications susceptible to excessive pressure spikes.

The intermittent pressures listed are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Fluid Guidelines

See page 28 for "Fluid Recommendations".

Some pump models may require reduced operating pressures when using lowlubricity fluids.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

Split-Flow[®] Provides Multiple Outlets

PF1000 models with split-flow covers efficiently supply flows for multiple function circuits. Piston outputs are grouped together in the cover, with various piston flow splits available in this four-piston pump. Refer to "Typical Model Code" on page 8 and contact the sales department for availability.

PF1000 SERIES

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 6.

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal. See page 6 for spline shaft data. Refer to Bulletin PSI.CB for general installation and operating recommendations. The drawing shows dimensions common to all PF1000 models. Note that the dimension for the outlet port varies as shown, dependent on the type of port. Refer to "Outlet Port Configurations" on page 29 and "Typical Model Code" below to specify port.

TYPICAL MODEL CODE

	PF10	02	H – S XV		A –	22 – 1 0
	Pump Type				Ports	Design
PF1	Fixed Displacement Checkball Pump			No Code	Inlet No. 16 S.A.E.; Outlet No. 8 S.A.E. ^①	Number
_)			A	Inlet No. 16 S.A.E.; Outlet 9/16 Medium Pressure Coned and Threaded, 0.8125-16 U.N2B Threaded [®]	Modificat
(Output Flow At 1800 rpm, at rated press	sure) ^①		В	Inlet No. 16 S.A.E.; Outlet G 3/8 (B.S.P.) ³	Numbe
02 03 04 05 06	1.5 gpm (5,7 L/min) 2.1 gpm (7,9 L/min) 2.6 gpm (9,8 L/min) 3.5 gpm (13,2 L/min) 4.1 gpm (15,5 L/min)	,		Contact of the fi 2 High pro Butech 3 Outlet p	ommended for operation above 8000 psi (560 bar). the fitting manufacturer for the pressure rating tting. essure port uses Autoclave Medium Pressure, M/P or equivalent fitting. hort uses British Standard Pipe fitting. Not lended for operation above 10 000 psi (700 bar).	
07	5.0 gpm (18,9 L/min) ²					
08	5.9 gpm (22,3 L/min) ^②				Split-Flow® Options (4 Piston Pump) ^①	
а	Dutput flows based on typical pe t rated pressure. Refer to perfo	ormance		No Code	Full flow from single outlet © Cover Models:	
	urves for flows at lower pressur lot available with high pressure			22	Two-pistons output + Two-pistons output	
				31	Three-pistons output + One-piston output	
	One and in a Decession			4X	Four ports, each with one-piston output	
No. 0	Operating Pressure			2	Two pistons output + Two inactive pistons	
No C F	High Pressure ^①				et port sizes, locations and pump cover dimension the sales department.	ıs,
1) F	Requires "A" or "B" port option.					
			_		Seals	
	Drive Shaft			No Code	All Buna-N (Nitrile) ^①	
No C		. ,		XE	All EPR with High Pressure Shaft Seal $^{\odot}$	
5	S.A.E. Spline , 0.875	inch (22,20 mm)	XV	All Fluorocarbon (Viton® or Fluorel®) with F	ligh Pressure Shaft Seal
					ilable with High Pressure "H" option. Contact the s ended operating conditions.	ales department for

Fixed displacement checkball pumps, with bi-directional shaft rotation, provide constant direction of output flow regardless of the direction of drive shaft rotation.

Mounting

S.A.E. B 2-bolt pattern with 0.25 inch (6,4 mm) pilot engagement.

Shaft Options

Standard keyed shaft, 0.875 inch (22.22 mm) diameter;

Optional spline shaft, 0.873/0.872 inch diameter standard S.A.E. 13 tooth, 16/32 D.P. 30° involute spline. Contact the sales department for model number.

Outlet Port Options

Standard pressure models have S.A.E. ports. High pressure models use either coned and threaded fittings (Autoclave Medium Pressure, Butech M/P or equivalent), or B.S.P. fittings (British Standard Pipe).

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in slight flow reduction. Refer to the table.

Seal Options

Standard seals are Buna-N (Nitrile). Contact the sales department for other seal options.

Weight (Mass)

30 lb (14 kg)

Specifications

	Output Flow at 1500 rpm ^① Output Flow at 1800 rpm ^①			Rated Pressure		Maximum Intermittent Pressure		Maximum		
Pump Models	U.S. gpm	L/min	U.S. gpm	L/min	psi	bar	psi	bar	Rated Speed rpm	Speed rpm
S.A.E. Ports:										
PF2007-2190	3.4	12,9	4.1	15,5	6000	420	6000	420	2000	2800
PF2008-2191	4.8	18,3	5.8	22,0	5000	350	6000	420	2000	2400
PF2009-2184	5.1	19,2	6.1	23,1	3000	210	4000	280	2000	2800
PF2012-2185	7.1	26,8	8.5	32,2	3000	210	4000	280	2000	2400
Coned and Thr	eaded O	utlet Por	<u>t:</u> @							
PF2007-2973	3.4	12,9	4.1	15,5	6000	420	10 000	700	1800	2800
B.S.P. Outlet Po	ort:®									
PF2007-3055	3.4	12,9	4.1	15,5	6000	420	10 000	700	1800	2800

D Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the table below.

2 High pressure outlet port uses Autoclave Medium Pressure, Butech M/P or equivalent fitting.

③ Outlet port uses British Standard Pipe fitting.

Minimum Inlet Pressures^①

	Operating Speed										
Pump	2000) rpm	2400) rpm	2800 rpm						
Models	psi	bar	psi	bar	psi	bar					
PF2007	0	0	3	0,2	5	0,4					
PF2008	0	0	5	0,4	-	-					
PF2009	0	0	3	0,2	5	0,4					
PF2012	0	0	5	0,4	-	-					

 Values shown are based on fluid viscosity of 100 SUS (20 cSt). Inlet pressures higher than 10 psig (0,7 bar) require a high-pressure shaft seal.

PUMP SELECTION

The "Specifications" table lists the most commonly used standard models with keyed shafts. Contact the sales department for models with spline shafts, optional seals and other extraordinary operating requirements.

Maximum Pressure

Checkball pumps are especially suited for applications susceptible to excessive pressure spikes.

The intermittent pressures listed are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Fluid Guidelines

See page 28 for "Fluid Recommendations".

Some pump models may require reduced operating pressures when using low-lubricity fluids.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

Split-Flow[®] Provides Multiple Outlets

PF2000 models with split-flow covers efficiently supply flows for multiple function circuits. Piston outputs are grouped together in the cover, with various piston flow splits available in this six-piston pump. Contact the sales department for Split-Flow[®] options and availability.

PF2000 SERIES

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 9.

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal. See page 9 for optional spline shaft data. Refer to Bulletin PSI.CB for general installation and operating recommendations. The diameter of the pump cover and the location of the outlet port varies as shown, dependent on the model. The port location for high-pressure models is shown printed in gray. This port uses either a coned and

threaded (Autoclave or Butech) fitting or a B.S.P. (British Standard Pipe) fitting. Refer to "Outlet Port Configurations" on page 29 and the "Specifications" table on page 9 for model numbers to specify port.

Fixed displacement checkball pumps, with bi-directional shaft rotation, provide constant direction of output flow regardless of the direction of drive shaft rotation.

Mounting

Special 4-bolt pattern. Refer to installation drawing.

Shaft

Available with 1.25 inch (31,75 mm) diameter keyed shaft.

Outlet Port Options

Available with S.A.E. or N.P.T.F. ports. Refer to the "Specifications" table.

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in slight flow reduction. Refer to the table.

Seal Options

Standard seals are Buna-N (Nitrile). Contact the sales department for other seal options.

Weight (Mass)

43 lb (20 kg)

Specifications

Pump	at 150	it Flow 0 rpm ^①	Output Flow at 1800 rpm ^①		Rated Inter		Interm	Maximum Intermittent Pressure		Maximum
Models	U.S. gpm	L/min	U.S. gpm	L/min	psi	bar	psi	bar	Speed rpm	Speed rpm
S.A.E. Ports:										
PF2006-1808	3.3	12,6	4.0	15,1	6000	420	8000	560	2000	2400
PF2008-1804	4.7	18,0	5.7	21,6	3000	210	5000	350	2000	2400
N.P.T.F. Ports:										
PF2006-1807	3.3	12,6	4.0	15,1	6000	420	8000	560	2000	2400
PF2008-1802	4.7	18,0	5.7	21,6	3000	210	5000	350	2000	2400

① Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the "Minimum Inlet Pressure" table.

Minimum Inlet Pressure^①

		Operatir	ng Speed		
Pump	2000) rpm	2400 rpm		
Models	psi	bar	psi	bar	
All PF2000 Models (Special Mounting)	0	0	5	0,4	

 Values shown are based on fluid viscosity of 100 SUS (20 cSt). Inlet pressures higher than 10 psig (0,7 bar) require a high-pressure shaft seal.

PUMP SELECTION

The "Specifications" table lists the most commonly used standard models with keyed shafts. Contact the sales department for models with optional seals and other extraordinary operating requirements.

Maximum Pressure

Checkball pumps are especially suited for applications susceptible to excessive pressure spikes.

The intermittent pressures listed are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Fluid Guidelines

See page 28 for "Fluid Recommendations".

Some pump models may require reduced operating pressures when using low-lubricity fluids.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

Split-Flow[®] Provides Multiple Outlets

These PF2000 Series pumps can efficiently supply flows for multiple function circuits.

Split-Flow[®] models are available with isolator valves installed into the pump, to separate one or more pistons from the main outlet. Up to six independent outlet flows are possible from this six-piston pump.

When using isolator valves, high-pressure models are limited to a maximum pressure of 6000 psi (420 bar).

Contact the sales department for Split-Flow[®] model numbers.

PF2000 SERIES SPECIAL MOUNTING

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 11.

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal.

These PF2000 Series models have a special 4-bolt mounting pattern shown below.

Refer to Bulletin PSI.CB for general installation and operating recommendations.

Refer to "Outlet Port Configurations" on page 29 and the "Specifications" table on page 11 for model numbers to specify ports.

Fixed displacement checkball pumps, with bi-directional shaft rotation, provide constant direction of output flow regardless of the direction of drive shaft rotation.

Mounting

S.A.E. C 4-bolt pattern with 0.25 inch (6,4 mm) pilot engagement.

Shaft Options

Standard keyed shaft, 1.250 inch (31,75 mm) diameter;

Optional spline shaft, 1.248/1.247 inch diameter standard S.A.E. 14 tooth, 12/24 D.P. 30° involute spline.

Outlet Port Options

Standard pressure models have S.A.E. ports. The high pressure "H" option requires the use of outlet port option "A" (Autoclave Medium Pressure, Butech M/P or equivalent fittings), or outlet port option "B" (British Standard Pipe fittings).

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in slight flow reduction. Refer to the table.

Seal Options

Standard seals are Buna-N (Nitrile). Options include Fluorocarbon (Viton[®] or Fluorel[®]), or EPR for use with some phosphate ester fluids.

Weight (Mass)

62 lb (28 kg)

Specifications

_	Output Flow at 1500 rpm ^① Output Flow at 1800 rpm ^①		Rat Press		Maxin Interm Press	Rated	Maximum				
Pump Models	U.S. gpm	L/min	U.S. gpm	L/min	psi	bar	psi	bar	Speed rpm©	Speed rpm [©]	
PF3011-10	6.7	25,5	8.1	30,7	6000	420	8000	560	1800	2800	
PF3015-10	8.3	31,5	10.0	37,8	6000	420	8000	560	1800	2500	
PF3017-10	10.0	37,8	12.0	45,4	6000	420	8000	560	1800	2200	
PF3021-10	12.0	45,4	14.4	54,5	4000	280	6000	420	1800	2500	
PF3024-10	14.3	54,2	17.2	65,1	4000	280	6000	420	1800	2200	
PF3011H-10	6.7	25,5	8.1	30,7	6000	420	10 000	700	1800	2800	
PF3015H-10	8.3	31,5	10.0	37,8	6000	420	10 000	700	1800	2500	

① Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the table below.

② Contact the sales department for applications requiring operation above rated speed. High speed operation may require a pressurized inlet. Refer to "Inlet Conditions".

Minimum Inlet Pressure[®]

		Operating Speed											
Pump	1500 rpm 1800 rpm				2200 rpm 2500			rpm	2800	800 rpm			
Models	psi	bar	psi	bar	psi	bar	psi	bar	psi	bar			
PF3011	0	0	0	0	5	0,4	7	0,5	10 [@]	0,7 [@]			
PF3015	0	0	3	0,2	7	0,5	10 ²	0,7 ²	-	-			
PF3017	0	0	5	0,4	10	0,7	-	-	-	-			
PF3021	0	0	3	0,2	7	0,5	10 ²	0,7 ^②	-	-			
PF3024	0	0	5	0,4	10	0,7	-	-	-	-			

① Values shown are based on fluid viscosity of 100 SUS (20 cSt).

Inlet pressures higher than 10 psig (0,7 bar) require a high-pressure shaft seal. Refer to "Typical Model Code" on page 15 for seal options.

PUMP SELECTION

The table shows specifications for standard pressure and high pressure "H" option models.

Ordering a PF3000 Series, 10 Design, pump requires a complete model code specifying shaft, seal and outlet port options. Refer to "Typical Model Code" on page 15.

Maximum Pressure

Checkball pumps are especially suited for applications susceptible to excessive pressure spikes.

The intermittent pressures listed are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Fluid Guidelines

See page 28 for "Fluid Recommendations".

Some pump models may require reduced operating pressures when using low-lubricity fluids.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

Split-Flow[®] Provides Multiple Outlets

PF3000 models with split-flow covers efficiently supply flows for multiple function circuits. Piston outputs are grouped together in the cover, with various piston flow splits available in this eight-piston pump. Refer to "Typical Model Code" on page 15 and contact the sales department for availability.

PF3000 SERIES

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to "Minimum Inlet Pressure" table on page 13.

PF3000 SERIES

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal.

See page 13 for spline shaft data.

Refer to Bulletin PSI.CB for general installation and operating recommendations.

The drawing shows dimensions common to all PF3000 models. Note that the location of

the outlet port varies as shown, dependent on the type of port. Refer to "Outlet Port Configurations" on page 29 and "Typical Model Code" below to specify port.

XV	All Fluorocarbon (Viton [®] or Fluorel [®]) with High Pressure Shaft Seal
	lable with High Pressure "H" option. Contact the sales department for ended operating conditions.

Fixed displacement checkball pumps, with bi-directional shaft rotation, provide constant direction of output flow regardless of the direction of drive shaft rotation.

Mounting

S.A.E. D 4-bolt pattern with 0.25 inch (6,4 mm) pilot engagement.

Shaft Options

Standard keyed shaft, 1.250 inch (31,75 mm) diameter;

Optional spline shaft, 1.248/1.247 inch diameter standard S.A.E. 14 tooth, 12/24 D.P. 30° involute spline.

Outlet Port Options

Standard pressure models have S.A.E. ports. High pressure "H" option models require the use of outlet port option "A" (Autoclave Medium Pressure, Butech M/P or equivalent fittings), or outlet port option "B" (British Standard Pipe fittings).

Refer to "Outlet Port Configurations" on page 29 and "Typical Model Code" on page 18 to specify outlet port.

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in slight flow reduction. Refer to the table.

Seal Options

Standard seals are Buna-N (Nitrile). Options include Fluorocarbon (Viton[®] or Fluorel[®]) or EPR for use with some phosphate ester fluids.

Weight (Mass) 111 lb (50 kg)

Specifications

	Output FlowOutput Flowat 1500 rpmat 1800 rpm			Rat Press		Maxin Interm Press	ittent	Rated	Maximum	
Pump Models	U.S. gpm	L/min	U.S		bar	psi bar		Speed rpm ^②	Speed rpm [®]	
PF4011-30	6.4	24,2	7.7	29,1	6000	420	8000	560	1800	2400
PF4016-30	9.2	35,0	11.1	42,0	6000	420	8000	560	1800	2400
PF4018-30	10.3	39,1	12.4	46,9	6000	420	8000	560	1800	2400
PF4020-30	11.6	44,1	14.0	53,0	6000	420	8000	560	1800	2400
PF4011H-30	6.0	23,0	7.3	27,6	10 000	700	10 000	700	1800	2400
PF4016H-30	8.7	33,1	10.5	39,7	10 000	700	10 000	700	1800	2400
PF4018H-30	10.0	38,1	12.1	45,8	8000	560	10 000	700	1800	2400
PF4020H-30	11.4	43,2	13.7	51,9	8000	560	10 000	700	1800	2400

① Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the table below.

② Contact the sales department for applications requiring operation above rated speed. High speed operation may require a pressurized inlet. Refer to "Inlet Conditions".

Minimum Inlet Pressure^①

	Operating Speed										
Pump	1200 rpm		1500 rpm		1800 rpm		2400 rpm				
Models	psi	bar	psi	bar	psi	bar	psi	bar			
PF4011	0	0	0	0	0	0	5	0,4			
PF4016	0	0	0	0	0	0	5	0,4			
PF4018	0	0	0	0	5	0,4	10 ²	0,7 [@]			
PF4020	0	0	5	0,4	102	0,7 [@]	15 [@]	1,02			

① Values shown are based on fluid viscosity of 100 SUS (20 cSt).

Inlet pressures higher than 10 psig (0,7 bar) require a high-pressure shaft seal. Refer to "Typical Model Code" on page 18 for seal options.

PUMP SELECTION

The table shows specifications for standard pressure and high pressure "H" option models.

Ordering a PF4000 Series, 10 Design, pump requires a complete model code specifying shaft, seal and outlet port options. Refer to "Typical Model Code" on page 18.

Maximum Pressure

Checkball pumps are especially suited for applications susceptible to excessive pressure spikes.

The intermittent pressures listed are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Fluid Guidelines

See page 28 for "Fluid Recommendations".

Some pump models may require reduced operating pressures when using low-lubricity fluids.

The optional "Low Lubricity Kit" provides an additional internal passage for improved bearing lubrication when using lowlubricity fluids. Refer to "Typical Model Code" on page 18.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

Split-Flow[®] Provides Multiple Outlets

PF4000 models with split-flow covers efficiently supply flows for multiple function circuits. Piston outputs are grouped together in the cover, with various piston flow splits available in this ten-piston pump. Refer to "Typical Model Code" on page 18 and contact the sales department for availability.

PF4000 SERIES

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 16.

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal. See page 16 for spline shaft data. Refer to Bulletin PSI.CB for general installation and operating recommendations.

The thickness of the cover and the location of the outlet port varies as shown, dependent on the port option.

Variable Dimensions

	Outlet Port Option									
	S.A.E. or I	B.S.P Port	Coned and Threaded							
Variable Dimension	Models PF4011, PF4016	Models PF4018, PF4020	Models PF4011, PF4016	Models PF4018, PF4020						
А	8.59 (218,2)	8.66 (220,0)	8.46 (214,9)	8.53 (216,7)						
В	3.94 (100,2)	3.94 (100,2)	4.09 (103,8)	4.09 (103,8)						
С	9.49 (241,1)	9.56 (242,9)	9.49 (241,1)	9.56 (242,9)						

PF4000 SERIES

TYPICAL MODEL CODE

PF4200 SERIES

PUMP DESCRIPTION

These fixed displacement high-pressure checkball pumps are capable of intermittent pressures to 20 000 psi (1380 bar).

They are compatible with a wide range of fluids including diesel calibration fluid, Skydrol and other phosphate ester fluids, various military fluids, and other lowviscosity or low-lubricity fluids.

Bi-directional shaft rotation provides constant direction of output flow regardless of the direction of drive shaft rotation.

Mounting

S.A.E. D 4-bolt pattern with 0.25 inch (6,4 mm) pilot engagement.

Shaft Options

Standard keyed shaft, 1.250 inch (31,75 mm) diameter;

Optional spline shaft, 1.248/1.247 inch diameter standard S.A.E. 14 tooth, 12/24 D.P. 30° involute spline.

Outlet Port Options

Standard pressure models have S.A.E. ports. High pressure "H" option models require the use of outlet port option "A" (Autoclave Medium Pressure, Butech M/P or equivalent fittings), or outlet port option "B" (British Standard Pipe fittings).

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in slight flow reduction. Refer to the table.

Seal Options

Options include Fluorocarbon (Viton[®] or Fluorel[®]) or EPR for use with some phosphate ester fluids.

Specifications^①

	Output Flow at 1500 rpm ⁽²⁾		Output Flow at 1800 rpm [@]			Rated Pressure		mum littent	Rated	Maximum	
Pump				U.S.				Pressure		Speed	Speed
Models	s g	ypm	L/min	gpm	L/min	psi	bar	psi	bar	rpm3	rpm3
PF4203-	-10	1.8	6,9	2.2	8,3	8000	560	8000	560	1800	1800
PF4205-	-10	3.0	11,4	3.6	13,6	8000	560	8000	560	1800	1800
PF4208-	-10	4.3	16,4	5.2	19,7	8000	560	8000	560	1800	1800
PF4209-	-10	4.9	18,6	5.9	22,3	8000	560	8000	560	1800	1800
PF4210-	-10	5.6	21,1	6.7	25,4	8000	560	8000	560	1800	1800
PF4203H	I-10	1.5	5,9	1.9	7,2	15 000	1040	20 000	1380	1800	1800
PF4205H	I-10	2.6	10,0	3.2	12,1	15 000	1040	20 000	1380	1800	1800
PF4208H	I-10	4.0	15,4	4.9	18,5	12 000	830	17 000	1170	1800	1800
PF4209H	I-10	4.6	17,6	5.6	21,2	12 000	830	17 000	1170	1800	1800
PF4210H	I-10	5.4	20,4	6.5	24,6	10 000	700	15 000	1040	1800	1800

① Specifications are based on the use of mineral oil operating within proper viscosity guidelines. Refer to "Fluid Guidelines" below and on page 28.

Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the table.

3 Contact the sales department for applications requiring operation above maximum speed.

Minimum Inlet Pressure[®]

		Operating Speed									
Pump	1200	rpm	1500	rpm	1800	rpm					
Models	psi	bar	psi	bar	psi	bar					
PF4203	0	0	0	0	0	0					
PF4205	0	0	0	0	0	0					
PF4208	0	0	0	0	5	0,4					
PF4209	0	0	5	0,4	10	0,7					
PF4210	0	0	5	0,4	10	0,7					

① Values shown are based on fluid viscosity of 100 SUS (20 cSt).

High pressure shaft seals are standard on all PF4200 Series models.

Weight (Mass)

140 lb (64 kg)

PUMP SELECTION

The table shows specifications for standard pressure and high pressure "H" option models. Refer to "Typical Model Code" on page 21 to specify shaft, seal and outlet port options.

Maximum Pressure

Checkball pumps are especially suited for applications susceptible to excessive pressure spikes. The intermittent pressures listed are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Fluid Guidelines

See page 28 for "Fluid Recommendations".

Some pump models may require reduced operating pressures when using low-lubricity fluids.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

PF4200 SERIES

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 19.

PF4200 SERIES

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal. See page 19 for spline shaft data. Refer to Bulletin PSI.CB for general installation and operating recommendations. The drawing shows dimensions common to all PF4200 Series pumps. Note, however, that Model PF4203 has three pistons, rather than five. As shown, the outlet port on these pumps is machined in a block integrally mounted to the pump barrel. Refer to "Outlet Port Configurations" on page 29 and "Typical Model Code" below to specify the port.

TYPICAL MODEL CODE

① Requires "A" or "B" port option.

PF4300 SERIES

PUMP DESCRIPTION

These fixed displacement checkball pumps are compatible with a variety of water-based fluids. Bi-directional shaft rotation provides constant direction of output flow regardless of the direction of drive shaft rotation.

Single-Fluid Lubrication Design

The checkball design uses the pumped fluid for internal bearing lubrication. This eliminates the potential for fluid crosscontamination, possible in other designs with isolated lubrication. It also avoids the cost of a separate lubrication circuit.

These pumps are ideal for use in wellhead safety control systems, other subsea applications, industrial equipment including hydroform presses, and other applications requiring fire-resistant fluids.

Mounting

S.A.E. D 4-bolt pattern with 0.25 inch (6,4 mm) pilot engagement.

Shaft Options

Standard keyed shaft, 1.250 inch (31,75 mm) diameter;

Optional spline shaft, 1.248/1.247 inch diameter standard S.A.E. 14 tooth, 12/24 D.P. 30° involute spline.

Outlet Port Options

Standard pressure models have S.A.E. ports. High pressure "H" option models require the use of outlet port option "A" (Autoclave Medium Pressure, Butech M/P or equivalent fittings), or outlet port option "B" (British Standard Pipe fittings).

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet

Specifications

Output Flow at 1200 rpm ^①			Output Flow at 1500 rpm ^①		Output Flow at 1800 rpm ^①		Maximum Pressure		Maximum	
Pump Models	U.S. gpm	L/min	U.S. gpm	L/min	U.S. gpm	L/min	psi	bar	Rated Speed rpm [©]	Speed rpm ²
PF4303-11	1.5	5,6	1.8	6,9	2.2	8,3	8000	560	1200	1800
PF4304-11	2.1	8,1	2.7	10,1	3.2	12,1	8000	560	1200	1800
PF4305-11	2.5	9,3	3.1	11,7	3.7	14,0	8000	560	1200	1800
PF4306-11	3.1	11,6	3.8	14,5	4.6	17,4	8000	560	1200	1800
PF4308-11	3.6	13,6	4.5	17,0	5.4	20,4	8000	560	1200	1800
PF4309-11	4.0	15,1	5.0	18,9	6.0	22,7	8000	560	1200	1800
PF4310-11	4.5	17,1	5.7	21,4	6.8	25,7	8000	560	1200	1800
PF4312-11	5.5	20,7	6.8	25,9	8.2	31,0	8000	560	1200	1800
PF4303H-11	1.3	4,8	1.6	6,2	2.0	7,5	15 000	1040	1200	1800
PF4304H-11	2.0	7,6	2.5	9,5	3.1	11,7	12 000	830	1200	1800
PF4305H-11	2.3	8,9	2.9	11,0	3.6	13,6	10 000	700	1200	1800
PF4306H-11	2.9	11,1	3.7	13,9	4.4	16,6	10 000	700	1200	1800
PF4308H-11	3.5	13,2	4.3	16,5	5.3	19,9	10 000	700	1200	1800
PF4309H-11	3.9	14,7	4.8	18,2	5.9	22,3	10 000	700	1200	1800
PF4310H-11	4.4	16,7	5.5	21,0	6.7	25,3	10 000	700	1200	1800
PF4312H-11	5.4	20,4	6.7	25,6	8.1	30,7	10 000	700	1200	1800

Output flow based on typical performance using water glycol fluid at maximum pressure with pressurized inlet where required, as shown in the table below.

2 Contact the sales department for operation above the rated speed of 1200 rpm.

Minimum Inlet Pressure ^①

_	Operating Speed									
Pump	1200	rpm	1500) rpm	1800 rpm					
Models	psi	bar	psi	bar	psi	bar				
PF4303, PF4304, PF4305 and PF4306	0	0	0	0	0	0				
PF4308	0	0	0	0	5	0,4				
PF4309	0	0	5	0,4	10	0,7				
PF4310	0	0	5	0,4	15	1,0				
PF4312	0	0	5	0,4	15	1,0				

Values shown are based on fluid viscosity of 33 SUS (1,9 cSt). Ð

minimum inlet requirements will result in slight flow reduction. Refer to the table.

Standard Seals

Fluorocarbon (Viton® or Fluorel®) with highpressure shaft seal.

Weight (Mass) 116 lb (53 kg)

PUMP SELECTION

The table shows specifications for standard pressure and high pressure "H" option models. Refer to "Typical Model Code" on page 24 to specify shaft and outlet port options.

Maximum Pressure

The maximum pressures listed are the highest pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Special Fluid Operation

Because of the wide range of water-based fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

PF4300 SERIES

Typical Performance Curves

Typical performance curves are based on 33 SUS (1,9 cSt) water glycol fluid with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 22.

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal. See page 22 for spline shaft data. Refer to Bulletin PSI.CB for general installation and operating recommendations. Note that Models PF4303 and PF4304 have three pistons; Models PF4305, PF4308, PF4309 and PF4310 have five pistons; and Models PF4306 and PF4312 have six pistons. As shown, the outlet port on these pumps is machined in a block integrally mounted to the pump barrel. Refer to "Outlet Port Configurations" on page 29 and "Typical Model Code" below to specify the port.

TYPICAL MODEL CODE

Fixed displacement checkball pumps, with bi-directional shaft rotation, provide constant direction of output flow regardless of the direction of drive shaft rotation.

Mounting

S.A.E. E 4-bolt pattern with 0.25 inch (6,4 mm) pilot engagement;

Shaft Options

Standard keyed shaft, 1.750 inch (44,45 mm) diameter;

Optional spline shaft, 1.748/1.747 inch diameter standard S.A.E. 13 tooth, 8/16 D.P. 30° involute spline. Contact the sales department for model number.

Outlet Port Options

Higher pressure models (PF6023, PF6033 and PF6046) require an outlet port block kit. Refer to page 27. Standard pressure models (PF6054, PF6070 and PF6080) have outlet ports with a pattern for standard 1 inch S.A.E. 4-bolt flange.

Inlet Conditions

Pumps may require pressurized inlet conditions at higher speeds. Failure to meet minimum inlet requirements will result in slight flow reduction. Refer to the table.

Seal Options

Standard seals are Fluorocarbon (Viton[®] or Fluorel[®]) with high-pressure shaft seal. Contact the sales department for other seal options.

Weight (Mass)

PF6023, PF6033 and PF6046: 240 lb (109 kg); PF6054, PF6070 and PF6080: 330 lb (150 kg).

Specifications

at 1500		Output Flow at 1800 rpm ^①		Rated Pressure		Maximum Intermittent Pressure©		Rated	Maximum Speed
U.S. gpm	L/min	U.S. gpm	L/min	psi	bar	psi	bar	Speed rpm	Speed rpm
h Coned	and Thr	eaded Po	ort:®						
10.5	40,0	12.7	48,0	15 000	1040	15 000	1040	1800	1800
h S.A.E.,	, Coned a	and Thre	aded, or	B.S.P. Po	rt: ³ 4				
18.3	69,3	22.0	83,2	10 000	700	10 000	700	1800	1800
26.0	98,7	31.3	118,4	8000	560	8000	560	1800	1800
4-Bolt F	Tange Ol	ıtlet Por	t:						
29.5	111,6	35.4	134,0	6000	420	6000	420	1800	2400
39.6	150,1	47.6	180,1	6000	420	6000	420	1800	2300
45.0	170,3	54.0	204,4	5500	380	5500	380	1800	2200
	at 1500 U.S. gpm 10.5 7 S.A.E. 18.3 26.0 4-Bolt P 29.5 39.6	gpm L/min 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 40,0 10.5 69,3 26.0 98,7 4-Bolt Flange Ou 29.5 29.5 111,6 39.6 150,1	at 1500 rpm [®] at 1800 U.S. U.S. gpm L/min gpm a Coned and Threaded Person 12.7 a S.A.E., Coned and Threaded 12.7 a S.A.E., Coned and Threaded 13.3 4-Bolt Flange Outlet Port 13.3 4-Bolt Flange Outlet Port 35.4 39.6 150,1 47.6	at 1500 rpm at 1800 rpm U.S. gpm L/min gpm L/min 0 Coned and Threaded Port:® 10.5 40,0 12.7 48,0 10.5 40,0 12.7 48,0 33,2 33,2 10.5 69,3 22.0 83,2 36,0 98,7 31.3 118,4 4-Bolt Flange Outlet Port: 29.5 111,6 35.4 134,0 39.6 150,1 47.6 180,1	at 1500 rpm® at 1800 rpm® At 1800 rpm® Rat Press gpm L/min gpm L/min psi 10.5 40,0 12.7 48,0 15 000 10.5 40,0 12.7 48,0 15 000 10.5 40,0 12.7 48,0 15 000 10.5 69,3 22.0 83,2 10 000 26.0 98,7 31.3 118,4 8000 4-Bolt Flange Outlet Port: 29.5 111,6 35.4 134,0 6000 39.6 150,1 47.6 180,1 6000	Rated Pressure u.s. gpm u.s. gpm u.s. gpm psi bar 0.5 40,0 12.7 48,0 15 000 1040 0.5. 40,0 12.7 48,0 15 000 1040 0.5. 40,0 12.7 48,0 15 000 1040 0.5. 40,0 12.7 48,0 15 000 1040 0.5. A6,03 22.0 83,2 10 000 700 26.0 98,7 31.3 118,4 8000 560 4-Bolt Flange Outlet Port: 29.5 111,6 35.4 134,0 6000 420 39.6 150,1 47.6 180,1 6000 420	At 1500 rpm [®] At 1800 rpm [®] Rated U.S. Rated Pressure Interm Pressure gpm L/min gpm L/min psi bar pressure 10.5 40,0 12.7 48,0 15 000 1040 15 000 10.5 40,0 12.7 48,0 15 000 1040 15 000 at 8.3 69,3 22.0 83,2 10 000 700 10 000 26.0 98,7 31.3 118,4 8000 560 8000 4-Bolt Flange Outlet Port: 29.5 111,6 35.4 134,0 6000 420 6000 39.6 150,1 47.6 180,1 6000 420 6000	At 1500 rpm [®] At 1800 rpm [®] Rated Pressure Intermittent Pressure [®] U.S. gpm L/min U.S. gpm psi bar 10.5 40,0 12.7 48,0 15 000 1040 15 000 1040 10.5 40,0 12.7 48,0 15 000 1040 15 000 1040 at 3.3 69,3 22.0 83,2 10 000 700 10 000 700 26.0 98,7 31.3 118,4 8000 560 8000 560 4-Bolt Flange Outlet Port: 29.5 111,6 35.4 134,0 6000 420 6000 420 39.6 150,1 47.6 180,1 6000 420 6000 420	Rated gpm Rated U.S. gpm Rated U.S. gpm Rated U.S. gpm Rated U.S. gpm Rated Pressure Intermittent Pressure Rated psi Rated psi

 Output flow based on typical performance at rated pressure with pressurized inlet where required, as shown in the table below.

Contact the sales department for applications requiring higher intermittent operating pressures.
 High pressure Coned and Threaded outlet port uses Autoclave Medium Pressure, Butech M/P or

High pressure Coned and Inreaded outlet port uses Autoclave Medium Pressure, Butech M/P of equivalent fitting. Refer to "Outlet Port Block Kits" on page 27.

④ B.S.P. outlet port uses British Standard Pipe fitting. Refer to "Outlet Port Block Kits" on page 27.

Minimum Inlet Pressure^①

· · · · ·								
Pump	1200 rpm		1500 rpm		1800	rpm	2400 rpm	
Models	psi	bar	psi	bar	psi	bar	psi	bar
PF6023	0	0	5	0,4	10	0,7	-	-
PF6033	0	0	10	0,7	15	1,0	-	-
PF6046	0	0	5	0,4	10	0,7	-	-
PF6054	0	0	5	0,4	5	0,4	10	0,7
PF6070	0	0	5	0,4	10	0,7	10 ^②	0,7 [@]
PF6080	5	0,4	5	0,4	10	0,7	15 [@]	1,02

Values shown are based on fluid viscosity of 100 SUS (20 cSt). All PF6000 Series pumps have a high-pressure shaft seal.

Refer to maximum speeds indicated in the "Specifications" table.

PUMP SELECTION

The "Specifications" table lists the most commonly used standard models with keyed shafts. Contact the sales department for model numbers with spline shafts, optional seals and other extraordinary operating requirements.

Maximum Pressure

Checkball pumps are especially suited for applications susceptible to excessive pressure spikes.

The intermittent pressures listed are the maximum pressures a pump can sustain for occasional, short periods of operation without appreciably reducing life expectancy.

Split-Flow[®] Provides Multiple Outlets

Split-Flow[®] models efficiently supply flows for multiple function circuits.

PF6000 Series models are available with individual piston outputs grouped together in the barrel or cover. Various piston flow splits are available in this ten-piston pump.

Models PF6033 and PF6046 are also available with isolator valves, to separate one or more pistons from the main outlet. Up to ten independent flows are possible from these ten-piston pumps. When using isolator valves, high-pressure models are limited to a maximum pressure of 6000 psi (420 bar).

Contact the sales department for Split-Flow[®] options and availability.

PF6000 SERIES

Typical Performance Curves

Typical performance curves are based on 100 SUS (20 cSt) mineral oil with pressurized inlet where required. Refer to the "Minimum Inlet Pressure" table on page 25.

INSTALLATION

All dimensions are shown in inches (millimeters in parentheses) and are nominal. Refer to page 25 for optional spline shaft data. Refer to Bulletin PSI.CB for general installation and operating recommendations.

Models PF6023, PF6033 and PF6046

The drawing shows dimensions common to these models. Note, however, that Model PF6023 has eight pistons, rather than ten.

As shown, the outlet port on these highpressure models is machined in a block, which mounts axially on the pump barrel. The block is not included with the pump. A kit, which includes mounting bolts and o-rings, must be ordered separately. Refer to the table and to "Outlet Port Configurations" on page 29 to specify the port.

Models PF6054, PF6070 and PF6080

As shown, these models have an auxiliary inlet port in the cover, which provides more fluid to improve the filling of the piston pumping chambers. Use of this port will increase volumetric efficiency.

The drawing shows dimensions common to these three models. Note, however, the different dimensions for the outlet port and the overall length for model PF6080.

Outlet Port Block Kits

Port Type	Kit Number
Model PF6023:	
Coned and Threaded ${\rm I}{\rm D}$	KP60239131
Models PF6033 and PF60	046:
No. 16 S.A.E.@	KP60339132
Coned and Threaded ${\rm I}{\rm D}$	KP60339133
G 3/4 (B.S.P.)3	KP60339134

 High pressure outlet port uses Autoclave Medium Pressure, Butech M/P or equivalent fitting.

2 Not recommended for operation above 8000 psi (560 bar). Contact the fitting manufacturer for the pressure rating of the fitting.

③ Outlet port uses British Standard Pipe fitting. Not recommended for operation above 10 000 psi (700 bar).

Models PF6023-3167, PF6033-3169 and PF6046-3174

Models PF6054-2946, PF6070-3186 and PF6080-2989

FLUID RECOMMENDATIONS

Mineral Oil

A high-grade premium petroleum-based fluid should be used to assure long component and system life. The fluid should have a combination of anti-wear, demulsibility, rust protection, oxidationresistant and foam-resistant properties.

Special Fluids

Various pump models are available for use with water-based fluids, diesel calibration fluids, phosphate ester fluids, machining coolant, brake fluid, various military fluids and other special fluids.

PF4300 Series pumps are compatible with a variety of water-based fluids. Refer to page 22 for specifications for these models, which are specifically rated for use with low-lubricity fluids.

Some pump models may require reduced operating pressures when using low-lubricity fluids.

Because of the wide range of fluid characteristics, contact the sales department for a review of any application using non-petroleum based fluids.

Viscosity Specifications

Using fluid with the correct viscosity range is critical to achieving long component life.

Fluid conditions outside the "Optimum" range shown in the table may result in reduced pump output, requiring pressurized inlet conditions. For more information, contact the sales department.

Hydraulic Fluid Viscosity[®]

		Ope	rating					
Pump	Minimum		Maxi	mum	Start-up ²		Optimum	
Models	SUS	cSt	SUS	cSt	SUS	cSt	SUS	cSt
Fixed Displacem	nent Pum	ps:						
PF500-10	52	8	1911	413	3706	800	98 to 324	20 to 70
PF1000-10	59	10	1911	413	3706	800	98 to 324	20 to 70
PF2000	59	10	1911	413	1911	413	98 to 324	20 to 70
PF2000 ²	34	2,3	1911	413	1911	413	98 to 324	20 to 70
PF3000-10	59	10	1911	413	3706	800	98 to 342	20 to 70
PF4000-30	34	2,3	1911	413	1911	413	98 to 324	20 to 70
PF4200-10	34	2,3	1911	413	1911	413	98 to 324	20 to 70
PF4300-11	31	1,5	927	200	927	200	-	-
PF6000	34	2,3	1911	413	1911	413	98 to 324	20 to 70
Mechanical Vari	able Deli	very Pun	nps:					
PV4000	34	2,3	1911	413	1911	413	98 to 324	20 to 70
PV6000	34	2,3	1911	413	1911	413	98 to 324	20 to 70
Hydraulic Variat	ole Delive	ry Pump	s:					
PV6000	34	2,3	1911	413	1911	413	98 to 324	20 to 70

Fluid conditions outside the "Optimum" range may result in reduced output, requiring pressurized inlet conditions. Contact the sales department.

② Models with special mounting.

MINIMUM FILTRATION LEVELS

Pump inlet: 150 µ nominal;

Pressure or return line: 25 µ nominal.

While finer filtration levels than these are desirable and will result in longer component life, restricting flow to the pump inlet should be avoided. Minimum recommended inlet conditions must be maintained.

If a system component fails resulting in fluid contamination, it is important to drain and clean the reservoir, all lines, filter screens and all components. Refill with new fluid.

INSTALLATION AND OPERATION

Refer to separate Bulletin PSI.CB for general installation and operating recommendations.

That brochure includes information on mounting, shaft loading, sizing inlet pipe and hose, air bleed procedures and initial start-up. Guidelines for maintenance, repair and trouble-shooting are also included.

PORT DESCRIPTIONS

Dynex pumps are available with outlet ports suitable for use at various pressure ranges. Refer to the appropriate "Specification Table" or "Typical Model Code" to specify the required port.

Contact the fitting manufacturer to ensure the selected fittings are rated for the maximum pump operating pressure.

S.A.E. Straight Thread Ports

Typical S.A.E. Straight Thread port connection

The Straight Thread connection (S.A.E. J1926/1) is sometimes referred to as an S.A.E. O-ring Boss, or ORB. The port consists of a machined spotface surface, a tapered seal cavity and a straight thread port.

The fitting forms a seal by compressing the o-ring in the seal cavity with the underside of the flanged wrench flat. Some adjustable fittings, such as elbows and tees, use a locknut with a captive backup washer for compression.

S.A.E. Straight Thread ports are not recommended for operation above 8000 psi (560 bar). Also, the maximum pressure of pumps with No. 12 S.A.E. outlet ports may be limited by the pressure rating of the available fitting. Contact the fitting manufacturer for ratings.

Coned and Threaded Ports

Typical Coned and Threaded port connection

High-pressure pumps are available with coned and threaded outlet ports, which use Autoclave Medium Pressure, Butech M/P, or equivalent fittings.

These fittings provide a metal-to-metal seal with an interference fit, not requiring an o-ring. The gland nut holds the sleeve and tubing against the cone surface.

A weep hole, visible on the outside of the pump cover, acts as an indicator of any abnormal leakage caused by system conditions (i.e., excessive pressure). It allows any fluid which does leak past the sealing surfaces to escape, preventing pressure build-up and possible damage.

British Standard Pipe Ports

Typical port connection with British Standard Pipe (Parallel) fitting with shoulder

High-pressure pumps are available with flat face ports with British Standard Pipe (B.S.P.) parallel threads (BS 2779 or ISO 228), ideal for use on some European applications.

The fitting forms a seal by compressing a flat elastomer ring on a machined spotface surface. There are several sealing methods for these ports. The recommended fitting has a recessed seal cavity formed by a shoulder on the underside of the flanged wrench flat (Voss "Peflex", Form B Shoulder Seal; or Parker Type E, "EOlastic" Seal; or equivalent).

B.S.P. ports are not recommended for operation above 10 000 psi (700 bar). Contact the fitting manufacturer, to ensure the selected fittings are rated for the maximum pump operating pressure.

S.A.E. 4-Bolt Flange Ports

Typical S.A.E. 4-Bolt Flange port connection

Flange connections are often used for higher flows requiring larger diameter tubing. The port consists of an unthreaded port with four bolt holes in a rectangular pattern on a machined face around the port (S.A.E. J518).

A typical fitting consists of a flanged head with a welded tube and a captive flange with bolt holes. A seal is formed by an o-ring in the groove on the underside mounting surface of the flange head. As the flange bolts are alternately tightened, the o-ring is compressed between the flange head and the machined face on the pump.

To make mounting easier in tight spaces a two-piece split-flange is often used.